ICS 02S Simulator

für Pt-100 | RTD | TC | mV/V

Benutzerhandbuch

Tel.: 03303 / 50 40 66

Fax.: 03303 / 50 40 68

Herstellererklärung

Das Unternehmen gewährt dem Erstkäufer des Instruments eine kostenlose Garantie (ausgenommen Sicherungen und Prüfleitungen) für Qualitätsmängel bei normaler Nutzung innerhalb eines Jahres ab Kaufdatum. Das Unternehmen übernimmt keine Verantwortung für Schäden am Gerät oder an Personen, die durch anormale Bedingungen oder unsachgemäße bzw. irreguläre Nutzung verursacht werden.

Für Serviceleistungen wenden Sie sich bitte an das nächstgelegene Servicecenter (ICS Schneider Messtechnik GmbH). Das Unternehmen haftet nicht für Schäden, die während des Transports entstehen. Treten während der Garantiezeit bei normaler Nutzung Qualitätsprobleme auf, repariert, ersetzt oder erstattet das Unternehmen das Produkt kostenlos. Stellt das Unternehmen jedoch fest, dass der Schaden durch Fehlbedienung, Umbau/Austausch, Unfall oder anormale Nutzung bzw. Betrieb verursacht wurde, werden angemessene Reparaturkosten berechnet und das reparierte Produkt an Sie zurückgesandt.

Reparatur oder Kalibrierung des zurückgesandten Produkts

Das Gerät ist ordnungsgemäß zu verpacken und per Express an das Unternehmen zu senden. Am besten verwenden Sie dafür den Original-Werkskarton. Ist kein Originalkarton verfügbar, verwenden Sie bitte eine geeignete und stabile Ersatzverpackung und stellen Sie eine ausreichende Stoßdämpfung sicher, um Schäden durch Vibrationen während des Transports zu vermeiden.

Erklärung an den Erstkäufer zu Transportschäden

Nach Erhalt der Instrumentenlieferung hat der Käufer das Instrument unverzüglich umfassend zu prüfen. Alle im Karton befindlichen Materialien sind gemäß der beiliegenden Packliste zu kontrollieren. Ist das Instrument in irgendeiner Weise beschädigt, benachrichtigen Sie bitte umgehend das Transportunternehmen/den Spediteur.

Zur Reparatur eines durch den Transport beschädigten Instruments wenden Sie sich bitte an ICS Schneider Messtechnik GmbH. Die Verhandlungen über eine Entschädigung wegen Transportschäden mit dem Transportunternehmen sind vom Kunden zu führen.

Inhaltsverzeichnis

1. Einführung — Seite 1 2. Kontakt — Seite 1 3. Standardkonfiguration — Seite 1 4. Sicherheitshinweise — Seite 2 5. Den Kalibrator kennenlernen — Seite 4 5.1 Ein- und Ausgänge — Seite 5 5.2 Tasten — Seite 5 5.3 Display — Seite 7 Vorbereitungen — Seite 8 6. 7. Ausgangsmodus verwenden — Seite 12 7.1 Leitungen an Ausgangsbuchsen anschließen — Seite 12 7.2 Gleichspannung ausgeben — Seite 12 7.3 Analoger Widerstandsausgang — Seite 13 7.4 Analoger Thermoelement-Ausgang — Seite 13 7.5 Analoger Ausgang: Widerstandsthermometer (RTD) — Seite 14 7.6 Rücksetzfunktion — Seite 15 8. Messmodus verwenden — Seite 15 8.1 Leitungen an Eingangsbuchsen anschließen — Seite 16

8.2 Gleichspannung messen — Seite 17

- 8.3 Widerstand messen Seite 18
- 8.4 Thermoelement messen Seite 18
- 8.5 Widerstandsthermometer (RTD) messen Seite 19
- 9. Werkseinstellungen Seite 20
 - 9.1 Einstellung der automatischen Abschaltzeit Seite 20
 - 9.2 Einstellung der Hintergrundbeleuchtungsdauer Seite 20
 - 9.3 Einstellung der Taschenlampenzeit Seite 21
 - 9.4 Summer-Einstellung Seite 21
 - 9.5 Temperatureinheit einstellen Seite 21
 - 9.6 Werkseinstellungen wiederherstellen Seite 22
- 10. Batterie wechseln Seite 23
- 11. Wartung Seite 24
 - 11.1 Kalibrator reinigen Seite 24
 - 11.2 Servicecenter für Kalibrierung oder Reparatur Seite 24
- 12. Index Seite 25
- 13. Hinweise zur Verwendung des Handbuchs Seite 34

ICS 02S Simulator

1 Einführung

Der ICS 02S Simulator (nachfolgend "Kalibrator") ist ein batteriebetriebenes, tragbares Handgerät zur Messung und Ausgabe elektrischer und physikalischer Größen. Er kann Gleichspannung, Widerstand, Thermoelemente und Widerstandsthermometer (RTD) messen. Zusätzlich können die entsprechenden analogen Ausgänge (Gleichspannung, Widerstand, Thermoelement, RTD) erzeugt werden.

2 Kontakt

Zum Bestellen von Komponenten, für Bedienunterstützung oder zur Ermittlung des nächstgelegenen Vertriebs- bzw. Servicecenters rufen Sie uns an oder besuchen Sie die Unternehmenswebsite (siehe Rückseite dieses Handbuchs).

3 Standardlieferumfang

Die folgenden Teile sind im Lieferumfang Ihres Simulators enthalten. Stellen Sie bei Erhalt fest, dass der Kalibrator beschädigt ist oder etwas fehlt, wenden Sie sich umgehend an das Unternehmen, bei dem Sie das Produkt gekauft haben. Für Austausch- oder Ersatzteile siehe die vom Anwender austauschbare Ersatzteilliste in Abschnitt 15.3 dieses Handbuchs.

- Industrie-Prüfleitungen (H000001-00) 1 Paar
- Handbuch 1 Stk.
- Thermoelement-Adapter 1 Stk.
- Verriegelungsschlüssel 1 Stk.
- AA-Alkalibatterien 3 Stk.

4 Sicherheitshinweise

Der Simulator ist gemäß den Anweisungen dieses Handbuchs zu verwenden; andernfalls können die vom Kalibrator bereitgestellten Schutzmaßnahmen beeinträchtigt werden. Das Unternehmen übernimmt keine Haftung für Schäden, die durch Nichtbeachtung der bereitgestellten Sicherheitswarnungen entstehen.

"WARNUNG" kennzeichnet eine Situation oder Handlung, die eine Gefahr für den Benutzer darstellen kann. "Vorsicht" kennzeichnet eine Situation oder Handlung, die den Simulator oder das zu prüfende Gerät beschädigen kann. Eine Erläuterung der im Simulator und im Handbuch verwendeten internationalen Elektrosymbole finden Sie in Tabelle 1.

Tabelle 1. Internationale Elektrosymbole

∆WARNUNG

Zur Vermeidung von elektrischem Schlag oder Personenschaden:

- Keine höhere Spannung als die am Kalibrator angegebene Nennspannung zwischen den Klemmen bzw. zwischen einer Klemme und Erde anlegen.
- Vor der Verwendung eine bekannte Spannung messen, um die ordnungsgemäße Funktion des Kalibrators zu verifizieren.
- Alle Sicherheitsanweisungen des Geräts befolgen.
- Keinen beschädigten Kalibrator verwenden. Vor Gebrauch das Gehäuse auf Risse oder fehlende Kunststoffteile prüfen; besonders auf die Isolierung um die Anschlüsse achten.
- Funktion und Messbereich entsprechend den Messanforderungen wählen.
- Sicherstellen, dass die Batterietür vor der Verwendung fest geschlossen ist.
- Prüfleitungen vor dem Öffnen der Batterietür vom Kalibrator trennen.

- Prüfen Sie die Prüfleitung auf Beschädigungen oder freiliegendes Metall/Leiter. Beschädigte Prüfleitungen müssen vor der Verwendung des Geräts ersetzt werden.
- Beim Verwenden der Prüfspitze halten Sie Ihre Finger vom Metallkontakt fern und hinter der Finger-Schutzmanschette der Prüfspitze.
- Beim Verdrahten zuerst den gemeinsamen Leiter (COM) anschließen und danach die aktive Prüfleitung; beim Abklemmen zuerst die aktive Prüfleitung entfernen.
- Verwenden Sie das Gerät nicht bei Fehlfunktion, da Schutzmaßnahmen beschädigt sein können. Im Zweifel das Gerät zur Reparatur einsenden.
- Das Gerät nicht in der Nähe von explosionsfähigen Gasen, Dämpfen oder Stäuben verwenden.
- Der Kalibrator wird mit 3 AA/LR6-Batterien betrieben, die korrekt im Gerät eingesetzt sein müssen.
- Vor dem Umschalten zwischen verschiedenen Mess- oder Ausgangsfunktionen die Prüfleitung abziehen.
- Für Reparaturen am Kalibrator nur die vorgesehenen Ersatzteile verwenden.
- Um Fehlanzeigen zu vermeiden, die zu Stromschlag oder Verletzungen führen könnten, die Batterie sofort ersetzen, sobald auf dem Display das Batteriesymbol für niedrigen Ladezustand erscheint.

5 Den Kalibrator kennenlernen

Abb.1 Gesamtansicht

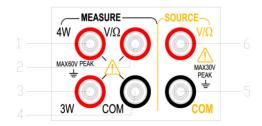


Abb.2 Ein-/Ausgangsbuchsen

5.1 Ein- und Ausgänge

Abbildung 2 zeigt die Ein- und Ausgänge des Kalibrators. Tabelle 2 erläutert deren Zweck.

2. Ein-/Ausgangsbuchsen

	2. Em // tasgangsodensen				
Terminal	Function description				
1	4W-Buchse: 4-Leiter- Widerstandsmessung, Sense (High)				
2	V/Ω -Buchse: Eingangsbuchse für alle Messungen (+)				
3	3W-Buchse: 4-Leiter- Widerstandsmessung, Sense (Low); 3-Leiter-Widerstandsmessung, Sense				
4	COM-Buchse: Gemeinsame Rückleitung (–) für alle Eingänge				
5	COM-Buchse: Gemeinsame Rückleitung (–) für alle Ausgänge				
6	V/Ω -Buchse: Ausgangsbuchse für alle Ausgänge (+)				

5.2 Tasten

Abbildung 3 zeigt die Tasten des Kalibrators. Tabelle 3 erläutert deren Funktionen.

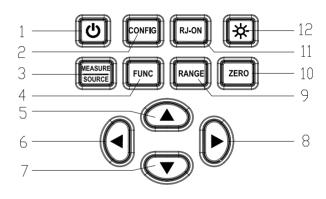


Figure 3. Button functions

Tabelle 3. Tastenfunktionen

SN	Tastenname	Beschreibung
1	Power	Gerät Ein/Aus
2	CONFIG	Konfiguration: Leitersystem bei Widerstandsmessung festlegen; Erregung bei Widerstandsausgabe einstellen; Kompensation im TC-(Thermoelement-)-Modus einsteller
3	MEASURE/SOURCE	Zwischen Eingang (Measure) und Ausgang (Source) umschalten
4	FUNC	Mess-/Ausgabefunktion umschalten
5, 7	Output setting	Einstellstelle erhöhen/verringern
6, 8	Output setting	Einstellstelle nach links/rechts verschieben
8	Output ZERO	Ausgang auf Standardwert zurücksetzen; in der Werkswartungs-Funktion
		speichert diese Taste die Einstellung
9	RANGE	Eingangs-/Ausgangsbereich wählen
10	ZERO	Ausgang auf Standardwert zurücksetzen; in der Werkswartungs- und
		Konfigurationsfunktion speichert diese Taste die Einstellung
11	RJ-ON	Temperatur-/Referenzstellenkompensation Ein/Aus
12	Backlight/flashlight	Kurz drücken: Hintergrundbeleuchtung Ein/Aus · Lang drücken: Taschenlampe Ein/Aus

5.3 Display

- a: Kennzeichnung für Ausgabemodus des Instruments
- b: Kennzeichnung für Messmodus des Instruments
- c: Ein/Aus-Symbol
- d: Vorzeichenanzeige des Ein-/Ausgangswerts
- e: Ein-/Ausgangswert
- f: Anzeige der Ausgabe-Bitstelle
- g: Wert der Kaltstellenkompensation (Temperatur)
- h: Einheit der Kaltstellenkompensation
- i: Spannungs-/Widerstandswert zugeordnet zur Thermoelement-/RTD-Funktion
- j: Einheit des unter i) angezeigten Werts (für Thermoelement/RTD)
- k: Einheitenanzeige für Ein-/Ausgangswert
- l: Kennzeichen Erregung bei Widerstandsausgabe
- m: Symbol für Thermoelement-Funktion
- n: Bereichsanzeige für Thermoelement
- o: Taschenlampen-Symbol
- p: Batteriestatus-Symbol
- q: Anzeige des Leitersystems für Widerstandseingang/RTD (z. B. 2/3/4-Leiter)
- r: Symbol Kaltstellenkompensation EIN (Thermoelement)
- s: Bereichsanzeige für RTD (Widerstandsthermometer)
- t: Symbol für RTD-Funktion
- u: Signal-Nerbindungsanzeige

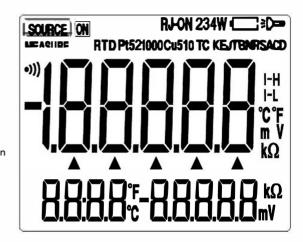


Abbildung 4. Typische Displayanzeige

6 Vorbereitungen

- Betriebshinweise
- Sichere Verwendung des Kalibrators
- Lesen Sie vor der ersten Inbetriebnahme die Sicherheitshinweise in Abschnitt 4
- Öffnen Sie das Gerätegehäuse nicht.
- Zur Prüfung oder Reparatur interner Komponenten wenden Sie sich an den Verkäufer, bei dem Sie das Produkt erworben haben.
- Störungsfälle: Gibt das Gerät Rauch oder ungewöhnlichen Geruch ab oder treten andere Anomalien auf, schalten Sie es sofort aus und entnehmen Sie die Batterien. Kontaktieren Sie anschließend den Verkäufer.
- Allgemeine Bedienung
- Vor dem Bewegen des Kalibrators zuerst das zu pr
 üfende Ger
 ät ausschalten, dann den Kalibrator. Anschließend alle Pr
 üfleitungen
 abziehen. F
 ür den Transport eine geeignete Transportverpackung verwenden.
- Bringen Sie keine unter Spannung stehenden Teile/Leiter in die N\u00e4he des Kalibrators, um Sch\u00e4den an der internen Schaltung zu vermeiden.
- Keine flüchtigen Chemikalien auf Gehäuse oder Bedienfeld auftragen und den Kalibrator nicht längere Zeit auf Gegenständen aus Gummi oder Vinyl ablegen. Das Bedienfeld (thermoplastischer Kunststoff) vor Kontakt mit Lötkolben, Lötzinn oder heißen Gegenständen schützen.
- Für den sicheren Batteriebetrieb siehe Abschnitt "Batterien einsetzen/wechseln".
- Den Kalibrator nie ohne Batteriefachabdeckung betreiben.
- Umgebungsanforderungen

Verwenden Sie das Gerät unter folgenden Bedingungen:

- Umgebungstemperatur: 0–50 °C
- Relative Luftfeuchte: 20–80 %, nicht kondensierend

- Verwenden Sie das Gerät auf einer ebenen, waagerechten Fläche.
- Nicht verwenden in folgenden Umgebungen:
- Orte mit direkter Sonneneinstrahlung oder in der Nähe von Wärmequellen
- In der N\u00e4he mechanischer Vibrationen
- In der Nähe von Störquellen, z. B. Hochspannungsanlagen oder Motorantrieben
- In der Nähe elektromagnetischer Felder bzw. in Bereichen mit hoher elektrischer Leistungsdichte
- Bereiche mit viel Ölnebel, Wärmefluss, Staub oder korrosiven Gasen
- Instabile Standorte oder Bereiche mit brennbaren Gasen (Explosionsgefahr)

Hinweis:

- Für präzise Messungen den Kalibrator unter folgenden Bedingungen betreiben: Umgebungstemperatur 23 ± 5 °C, relative Luftfeuchte 20–80 % (nicht kondensierend). Bei Einsatz in 0–18 °C oder 28–50 °C siehe den Abschnitt "Index" und addieren Sie den zusätzlichen Fehler gemäß Temperaturkoeffizient, um die angegebene Genauigkeit zu erreichen.
- Liegt die Umgebungsfeuchte unter 30 %, eine antistatische Unterlage verwenden oder andere wirksame Maßnahmen gegen statische Aufladung treffen.
- Wird das Gerät von kühler/trockenerer in wärmere Umgebung verbracht oder tritt eine plötzliche Temperaturänderung auf, das Gerät vor der Nutzung mindestens 1 Stunde bei Umgebungstemperatur akklimatisieren/aufwärmen.
- Batterien einsetzen/wechseln

WARNUNG

 Um Stromschlag zu vermeiden, müssen die Prüfleitungen vor dem Öffnen der Batterietür vom Kalibrator getrennt werden. Die Batterietür muss vor der Nutzung des Kalibrators fest verschlossen sein.

Vorsicht

• Zur Vermeidung von Auslaufen oder Batterieexplosion die Pole korrekt (+/-) einsetzen.

- Die Batterie nicht kurzschließen.
- Die Batterie nicht zerlegen, erhitzen oder ins Feuer werfen.
- Beim Wechseln drei identische Batterien gleichzeitig ersetzen.
- Wird der Kalibrator längere Zeit nicht benutzt, Batterien entnehmen

Vorgehen

- Mit einem Schlitzschraubendreher die Schraube der Batterietür eine Viertelumdrehung gegen den Uhrzeigersinn drehen und die Batterietür abnehmen.
- Drei AA/LR6-Alkaline-Batterien entsprechend der Markierung richtig in das Batteriefach einsetzen.
- 4. Nach dem Einsetzen die Batterietür wieder fest verschließen.

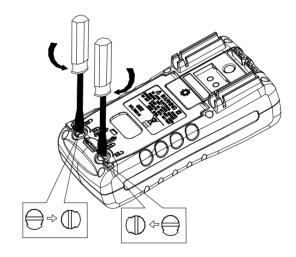


Abbildung 5

■ Ein/Aus

Drücken Sie die Power-Taste, um den Kalibrator einzuschalten. Zum Ausschalten bei eingeschaltetem Gerät die Power-Taste 2 Sekunden gedrückt halten.

Automatische Abschaltung

Bei keiner Tastenbetätigung innerhalb der werkseitigen Voreinstellung von 5 Minuten schaltet der Kalibrator automatisch ab. Die Abschaltzeit kann in den Werkseinstellungen geändert werden (siehe Kapitel 9 "Werkseinstellungen").

■ Hintergrundbeleuchtung ein/aus

Drücken Sie die Backlight-Taste, um die Hintergrundbeleuchtung einzuschalten; erneut drücken, um sie auszuschalten. Das erleichtert das Ablesen in dunkler Umgebung oder bei Ausgaben/Messungen. Bei Batteriebetrieb verkürzt eingeschaltete Beleuchtung die Batterielaufzeit.

Hinweis

Die Hintergrundbeleuchtung schaltet sich standardmäßig nach ca. 60 s automatisch aus. Zum erneuten Einschalten die Backlight-Taste drücken. Die Beleuchtungsdauer kann in den Werkseinstellungen angepasst werden (siehe Kapitel 9 "Werkseinstellungen").

7 Ausgangsmodus verwenden

▲Warnung

Zwischen den Buchsen des Kalibrators bzw. zwischen irgendeiner Buchse und Erde darf die am Gerät angegebene Nennspannung nicht überschritten werden. Zur Vermeidung von Stromschlag die Spitzenspannung von 30 V zwischen Anschluss und Erde nicht überschreiten.

7.1 Leitungen an die Ausgangsbuchsen anschließen

Anschlussmethode für alle Ausgänge (siehe Abbildung 6)

Schritt 1: Die schwarze Leitung an COM (Source), die rote Leitung an V/Ω (Source) anschließen.

Schritt 2: Die anderen Enden der beiden Leitungen an die Eingänge des zu prüfenden Geräts anschließen und auf korrekte Polarität achten.

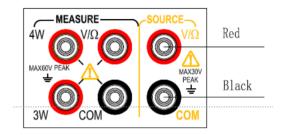


Figure 6. Output Mode

7.2 Gleichspannung ausgeben

Step 1: Press (MEASURE/SOURCE) button to switch to the output state and (SOURCE) sign of the display screen will light up. The default is DC voltage function with a measurement range of 100mV at this moment. The character mV on the right side of the main display area of the LCD display screen will light up.

Step 2: Press (RANGE) button for choosing proper measurement range (100mV,1V)

Step 3: Use output setting button to set the output value.

Change the output setting bit: () / ()
Change the output value: () / ()

Time The (7FDO) button can be appeared to get the out

Tip: The (**ZERO**) button can be pressed to set the output setting to the default initial value (0).

7.3 Analoger Widerstandsausgang

Schritt 1: FUNC drücken, um auf die Funktion Analog-Widerstand umzuschalten; rechts im Hauptdisplay erscheint Ω.

Schritt 2: Mit RANGE den gewünschten Bereich wählen (400 Ω / 4 k Ω).

- Im Bereich 400 Ω stehen zwei Erregerströme zur Wahl (1 mA / 0,1 mA) für höhere Genauigkeit.
- Erregerstrom einstellen: CONFIG drücken, um das Einstellmenü zu öffnen. In der Nebenanzeige unten rechts erscheint OHM.IS; im Hauptdisplay werden I-H = 1 mA bzw. I-L = 0,1 mA angezeigt. Mit den Einstelltasten (▲/▼) den Erregerstrom ändern, mit ZERO speichern und mit CONFIG das Menü verlassen.

Schritt 3: Mit den Einstelltasten den Ausgabewert setzen.

- Einstellstelle verschieben: ◄/▶
- Ziffernwert ändern: ▲/▼

Hinweis: Blinkt rechts im Hauptdisplay die Erregerstrom-Anzeige, stimmt der Erregerstrom nicht zum Bereich (z. B. 400 Ω). Öffnen Sie das Einstellmenü und wählen Sie den passenden Erregerstrom.

7.4 Analoger Thermoelement-Ausgang

Schritt 1: FUNC drücken, um auf die Funktion Thermoelement umzuschalten; oben rechts erscheint TC.

Schritt 2: Mit RANGE den gewünschten Thermoelement-Typ wählen (R/S/K/E/J/T/N/B/A/C/D).

Schritt 3: Falls eine Kaltstellenkompensation erforderlich ist, mit RJ-ON einschalten (bei nicht benötigter Kompensation Schritt überspringen).

Die Kompensation kann automatisch oder manuell erfolgen.

- Automatisch: Das Gerät nutzt die von seinem internen Temperatursensor erfasste Umgebungstemperatur.
- Manuell: Gewünschte Kaltstellentemperatur vorgeben (siehe Fortsetzung).

Die manuelle Temperatur zeigt die vom Benutzer eingestellte Kaltstellentemperatur an.

Kaltstellenkompensation einstellen:

Drücken Sie CONFIG, um das Einstellmenü für die Kaltstellenkompensation zu öffnen. In der Nebenanzeige unten rechts erscheint RJST (= Moduswahl). Im Hauptdisplay können die Parameter MANU (manuelle Kompensation) bzw. AUTO (automatische Kompensation) gewählt werden. Mit den Einstelltasten (◀/▶) ändern Sie die Auswahl.

Drücken Sie ZERO, um zu speichern und in die manuelle Temperaturvorgabe zu wechseln; unten rechts erscheint nun RJVA. Im Hauptdisplay stellen Sie die Temperatur ein (Bereich −10...50). Die Zieltemperatur wird mit ◄/► (Stelle wählen) und ▲/▼ (Wert ändern) gesetzt. Mit ZERO speichern und zur nächsten Einstellung wechseln; mit CONFIG das Menü verlassen.

Tipp: Bei AUTO zeigt die Anzeige unten links die tatsächliche Umgebungstemperatur des internen Sensors. Bei MANU wird die vom Benutzer eingestellte Kompensationstemperatur angezeigt und das Zeichen M leuchtet.

Schritt 4: Mit den Einstelltasten den Ausgabewert setzen.

- Einstellstelle wechseln: ◄/▶

- Ziffernwert ändern: ▲/▼

7.5 Analoger RTD-Ausgang (Widerstandsthermometer)

Schritt 1: FUNC drücken, um auf die Funktion RTD-Ausgang umzuschalten; oben links leuchtet RTD.

Schritt 2: Mit RANGE die gewünschte Kennlinie wählen (PT100 / PT200 / PT500 / PT1000 / Cu50).

Für PT100 und Cu50 stehen zwei Erregerströme zur Verfügung (1 mA / 0,1 mA) – je nach Genauigkeitsanforderung manuell wählbar.

Erregerstrom einstellen: CONFIG drücken, um das Einstellmenü zu öffnen; es erscheint OHM.IS (Fortsetzung auf der nächsten Seite).

Schritt 3: Mit den Einstelltasten den Ausgabewert setzen.

Einstellstelle wechseln: ◄/▶

Ziffernwert ändern: ▲/▼

Tipp: Blinkt rechts im Hauptdisplay die Erregerstrom-Anzeige, passt der Erregerstrom (nur bei PT100 und Cu50) nicht.

Öffnen Sie dann das Einstellmenü und stellen Sie den passenden Erregerstrom ein.

(Im Menü unten rechts: I-H = 1 mA, I-L = 0,1 mA; mit ZERO speichern, mit CONFIG beenden.)

7.6 Rücksetzfunktion

 Mit der Taste ZERO kann in jedem Bereich (Gleichspannung, Widerstand, Thermoelement-, RTD-Ausgang) der Ausgabewert auf den Standard-Startwert zurückgesetzt werden. Das erleichtert das schnelle Nullsetzen der Ausgabe.

8 Messmodus verwenden

∧ Warnung

• Die Messfunktion wird mit angeschlossenen Leitungen genutzt. Die maximale Spannung jeder Eingangsbuchse gegen Erde beträgt 60 V (Spitze). Zur Vermeidung von Stromschlag keine höhere Spannung zwischen Buchse und Erde anlegen.

Tipp

• Überschreitet der Messwert den Messbereich, erscheint im Hauptdisplay das Symbol "OL" (Überlauf).

8.1 Leitungen an die Eingänge anschließen

Anschlussmethode für Gleichspannung, Thermoelement, RTD

(Thermalwiderstand) und 2-Leiter-Widerstand (siehe Abb. 7)

Schritt 1: Schwarze Leitung an COM (Eingang), rote Leitung an V/Ω (Eingang) anschließen.

Schritt 2: Die anderen Leitungsenden an den Messanschlüssen des Prüflings anschließen und auf korrekte Polarität achten.

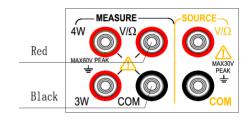


Abbildung 7: Messung von DC-Spannung, Thermoelement, RTD und Widerstand (2W)

Anschlussmethode für 3-Leiter-Widerstand und 3-Leiter-RTD (siehe Abb. 8)

Schritt 1: Schwarze Leitung an COM (Eingang), rote Leitung an V/Ω (Eingang) und die dritte Leitung an 3W anschließen.

Schritt 2: Die drei Leitungsenden jeweils an die Messanschlüsse des Prüflings anschließen und die korrekte Polarität sicherstellen.

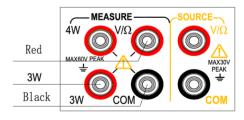


Abbildung 8: Messung von Widerstand/RTD im 3-Leiter-Verfahren (3W)

Anschlussmethode für 4-Leiter-Widerstand und 4-Leiter-RTD (siehe Abb. 9)

Schritt 1: Schwarze Leitung an COM (Eingang), rote Leitung an V/Ω (Eingang),

dritte Leitung an 3W, vierte Leitung an 4W anschließen.

Schritt 2: Die vier Leitungsenden an die Messanschlüsse des Prüflings anschließen und korrekte Polarität sicherstellen.

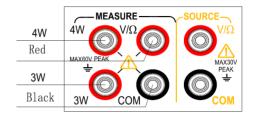


Abbildung 9: Widerstands-/RTD-Messung (4W)

Marnung

Vor dem Anschließen des Kalibrators an den Prüfling dessen Stromversorgung trennen.

Fehlbedienung der Schaltung oder während der Messung kann Gerät und Personen gefährden – daher höchstmögliche Sorgfalt walten lassen.

8.2 Gleichspannung messen

Schritt 1: Sicherstellen, dass die Messleitung vom Prüfling getrennt ist.

Schritt 2: MEASURE/SOURCE drücken, um in den Messmodus zu wechseln; das Symbol MEASURE leuchtet. Standardmäßig ist die Funktion Gleichspannung mit dem Bereich 100 mV aktiv; rechts im Hauptdisplay leuchtet mV.

Schritt 3: Mit RANGE den gewünschten Bereich wählen: 100 mV, 1 V oder 30 V.

Schritt 4: Messleitung mit dem Prüfling verbinden; der Messwert erscheint im Hauptdisplay.

8.3 Widerstand messen

Schritt 1: Sicherstellen, dass die Messleitung vom Prüfling getrennt ist.

Schritt 2: FUNC drücken, um auf die Widerstandsmessung umzuschalten; das Symbol Ω leuchtet.

Schritt 3: Mit RANGE den Messbereich wählen (500 Ω / 5 k Ω).

Schritt 4: Leitersystem wählen: CONFIG drücken, um das Leitersystem-Menü zu öffnen. Unten rechts erscheint Wire System, im

Hauptdisplay 2W/3W/4W. Mit ◄/ ▶ auswählen, mit ZERO speichern und mit CONFIG beenden.

Schritt 5: Messleitungen an den Prüfling anschließen; der Messwert erscheint im Hauptdisplay.

8.4 Thermoelement messen

Schritt 1: Sicherstellen, dass die Messleitung vom Prüfling getrennt ist.

Schritt 2: FUNC drücken, um auf Thermoelement umzuschalten; TC leuchtet.

Schritt 3: Mit RANGE den gewünschten Typ wählen (R/S/K/E/J/T/N/B/A/C/D).

Schritt 4: Falls Kaltstellenkompensation benötigt wird, mit RJ-ON einschalten (sonst Schritt überspringen).

Kaltstellenkompensation einstellen:

- Es gibt AUTO (automatisch, nutzt die vom internen Sensor gemessene Umgebungstemperatur) und MANU (manuelle Vorgabe durch den Benutzer).
- CONFIG drücken, um das Kompensationsmenü zu öffnen; unten rechts erscheint RJST. Im Hauptdisplay MANU/AUTO mit ◄/▶ wählen, mit ZERO speichern.
- Bei MANU wird anschließend die Temperaturvorgabe eingestellt (Bereich −10...50 °C): Stelle mit ◄/▶ wählen, Wert mit ▲/▼ ändern; mit ZERO speichern.
- Mit CONFIG das Menü verlassen.

Einstellung Kaltstellenkompensation (Detail):

CONFIG drücken \Rightarrow Einstellmenü RJST (unten rechts) erscheint. Im Hauptdisplay MANU (manuell) oder AUTO (automatisch) wählen (\P/\P).

ZERO drücken, um zu speichern und in die manuelle Temperaturvorgabe zu wechseln (RJVA unten rechts). Im Hauptdisplay die Temperatur einstellen (−10...50 °C; Stelle mit ◄/▶ wählen, Wert mit ▲/▼ ändern).

Mit ZERO speichern und mit CONFIG das Menü verlassen.

Tipp: Bei AUTO zeigt die Anzeige unten links die tatsächliche Umgebungstemperatur. Bei MANU wird die vom Benutzer eingestellte Kompensationstemperatur angezeigt und das M-Symbol leuchtet.

Schritt 5: Messleitung an die Messanschlüsse des Prüflings anschließen; der Messwert erscheint im Hauptdisplay.

8.5 Messung von Widerstandsthermometern (RTD)

Schritt 1: Sicherstellen, dass die Messleitung vom Prüfling getrennt ist.

Schritt 2: FUNC drücken, um auf die RTD-Funktion umzuschalten; RTD leuchtet.

Schritt 3: Mit RANGE die gewünschte Kennlinie wählen (PT100 / PT200 / PT500 / PT1000 / Cu50).

Schritt 4: Leitersystem wählen: CONFIG drücken, um das Menü zu öffnen. Unten rechts erscheint WRIE/Wire System; im

Hauptdisplay 2W/3W/4W. Mit ◄/ ▶ auswählen, mit ZERO speichern und mit CONFIG beenden.

Schritt 5: Messleitung an die Messanschlüsse des Prüflings anschließen; der Messwert wird im Hauptdisplay angezeigt.

9 Werkseinstellungen

Der Kalibrator erlaubt Änderungen an den werkseitigen Standard-einstellungen.

Aufrufen der Einstellungen: Backlight-Taste gedrückt halten und anschließend die Power-Taste drücken, um das Gerät einzuschalten. Sobald das Einstellmenü erscheint, die Backlight-Taste loslassen.

9.1 Automatische Abschaltzeit einstellen

Schritt 1: Nach dem Aufrufen der Einstellungen erscheint "APOF" im Display (Menü für Auto-Abschaltung).

Schritt 2: Mit den Einstelltasten (◀/▶/▲/▼) die gewünschte Zeit wählen; Einheit: Minute.

Einstellbereich: 0-60 min; 0 = automatische Abschaltung deaktiviert, andere Werte = Zeit bis zum Abschalten.

Schritt 3: ZERO drücken; das Display zeigt "SAVE" (Einstellung gespeichert).

9.2 Hintergrundbeleuchtungszeit einstellen

Schritt 1: CONFIG drücken; im Display erscheint "BLOF" (Menü für Beleuchtungszeit).

Schritt 2: Mit ◄/ ▶/▲/▼ die Zeit festlegen; Einheit: Sekunde.

Einstellbereich: 0–3600 s; 0 = automatische Abschaltung der Beleuchtung deaktiviert, andere Werte = Zeit bis zum Ausschalten der Beleuchtung.

Schritt 3: ZERO drücken; das Display zeigt "SAVE" (Einstellung gespeichert).

9.3 Taschenlampen-Zeit einstellen

Schritt 1: CONFIG drücken; im Display erscheint "LTOF" (Einstellung der Taschenlampen-Zeit).

Schritt 2: Mit **◄**/**▶**/**▲**/**▼** die gewünschte Zeit in Minuten einstellen.

Einstellbereich: 0–30 min; 0 = automatische Abschaltung der Taschenlampe aus, andere Werte = Zeit bis zum Ausschalten der Taschenlampe.

Schritt 3: ZERO drücken; das Display zeigt "SAVE" (Einstellung gespeichert).

9.4 Summer-Einstellung

Schritt 1: CONFIG drücken; im Display erscheint "BEEP" (Summereinstellung).

Mit ◄/ ▶ die gewünschte Option wählen: ON = Signalton ein, OFF = Signalton aus.

Schritt 3: ZERO drücken; das Display zeigt "SAVE" (Einstellung gespeichert).

9.5 Temperatureinheit einstellen

Schritt 1: CONFIG drücken; im Display erscheint "TEPU" (Temperatureinheit).

Schritt 2: Mit **◄**/ **▶** die Einheit wählen: C = Celsius, F = Fahrenheit.

Schritt 3: ZERO drücken; das Display zeigt "SAVE" (Einstellung gespeichert).

9.6 Werkseinstellungen wiederherstellen

Schritt 1: CONFIG drücken; im Display erscheint "FACT" (Werkseinstellungs-Menü).

Schritt 2: Mit ◄/ ► NO/YES wählen: NO = keine Rücksetzung; YES = alle Einstellungen auf Werkwerte zurücksetzen.

Schritt 3: ZERO drücken; das Display zeigt "SAVE" (Einstellung gespeichert).

Werkseitige Standardwerte:

• APOF: 5 Minuten (Auto-Abschaltung)

• BLOF: 60 Sekunden (Hintergrundbeleuchtung)

• LTOF: 5 Minuten (Taschenlampe)

• BEEP: ON

• TEPU: C (Celsius)

Hinweis: Nach jeder Änderung muss mit ZERO gespeichert werden. Ein Druck auf ZERO speichert jeweils nur den zuletzt geänderten Wert.

10 Batterie wechseln **AWARNUNG**

Um Stromschlag zu vermeiden, Prüfleitungen vor dem Öffnen der Batterietür vom Kalibrator trennen.

Batterietür muss vor der Nutzung des Kalibrators wieder fest verschlossen sein.

Vorsicht

- Zur Vermeidung von Auslaufen oder Explosion Batteriepolung (+/-) korrekt einsetzen.
- Keinen Kurzschluss der Batterie verursachen.
- Batterie nicht zerlegen, erhitzen oder ins Feuer werfen.
- Beim Wechseln drei identische Batterien gleichzeitig ersetzen.
- Bei längerer Nichtbenutzung Batterien aus dem Kalibrator entnehmen.

Vorgehen

- Vor dem Batteriewechsel Pr
 üfleitungen entfernen und den Kalibrator ausschalten.
- Mit einem Schlitzschraubendreher die Schraube der Batteriet
 ür ¼
 Umdrehung gegen den Uhrzeigersinn drehen und die T
 ür abnehmen (siehe Abb. 10).
- Drei AA/LR6-Alkalibatterien entsprechend der Markierung korrekt in das Fach einsetzen.
- 4. Batterietür schließen und die Schraube fest anziehen.

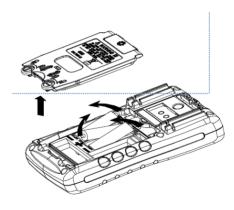


Abbildung 10. Batterie wechseln

11 Wartung

11.1 Kalibrator reinigen

∆WARNUNG

Verwenden Sie ausschließlich die vorgesehenen Ersatzteile, um Personenschäden oder Schäden am Kalibrator zu vermeiden. Lassen Sie kein Wasser in das Gehäuse eindringen.

Vorsicht

Keine Lösungsmittel oder Scheuermittel verwenden, um Beschädigungen an Kunststofflinse und Gehäuse zu vermeiden. Den Kalibrator mit einem weichen, leicht angefeuchteten Tuch oder mit mildem Seifenwasser reinigen.

11.2 Servicecenter für Kalibrierung oder Reparatur

Kalibrierung, Reparatur oder Wartung dürfen nur von erfahrenem Fachpersonal durchgeführt werden. Bei einer vermuteten Fehlfunktion zuerst die Batterie prüfen und ggf. ersetzen. Achten Sie darauf, dass der Kalibrator gemäß diesem Handbuch betrieben wird.

Liegt eine Fehlfunktion vor, senden Sie das Gerät mit Fehlerbeschreibung zurück. Wenn der Originalkarton noch vorhanden ist, senden Sie den Kalibrator gut verpackt an das nächstgelegene Servicecenter (Versand- und Versicherungskosten bitte übernehmen). Das Unternehmen übernimmt keine Haftung für Transportschäden.

Unter die Garantie fallende Kalibratoren können nach Ermessen des Unternehmens schnell repariert oder ersetzt und kostenfrei zurückgesendet werden. Beachten Sie hierzu die Garantiebedingungen in diesem Handbuch. Nach Ablauf der Garantie fallen für Reparaturen Gebühren an. Ist der Kalibrator nicht durch die Garantie abgedeckt, wenden Sie sich an ein autorisiertes Servicecenter des Unternehmens, um sich nach Reparaturen und Kosten zu erkundigen. Adressen autorisierter Servicecenter finden Sie im Abschnitt "Contact Us" am Anfang des Handbuchs.

12 Index – Eingangs-Messfunktionen

(Verwendung innerhalb eines Jahres nach Kalibrierung, 23 °C \pm 5 °C, 20–70 % r. F.; Genauigkeit = \pm (% Sollwert + Ablesung))

Messfunktion	Bereich	Messbereich	Auflösung	Genauigkeit	Hinweise
Gleichspannung (DCV)	100 mV	-110,000 mV +110,000 mV	0,01 mV	± 0,05 % + 0,03 mV	Eingangswiderstand: ca. 1 $M\Omega$
	1 V	-1,1000 V +1,1000 V	0,0001 V	± 0,05 % + 0,3 mV	
	30 V	-30,000 V +30,000 V	0,001 V	± 0,02 % + 2 mV	
Widerstand (Ω)	500 Ω	0 550,00 Ω	0,01 Ω	± 0,05 % + 0,2 Ω	$2W/3W/4W$ -Messung; 500 Ω : Erregerstrom ca. 1 mA; 5 k Ω : Erregerstrom ca. 0,1 mA; Leerlaufspannung ca. 2,5 V; Genauigkeit ohne Leitungswiderstand
	5 kΩ	0 5,5000 kΩ	0,0001 kΩ	± 0,05 % + 2 Ω	

Thermoelement (TC) - Eingangs-Messfunktionen

Messfunktion	Тур	Messbereich	Auflösung	Genauigkeit	Hinweise
Thermoelement	R	01767 °C	1 °C	±(0,05 % + 3) ≤ 100 °C; ±(0,05 % + 2) > 100 °C	
	S	01767 °C	1 °C	±(0,05 % + 3) ≤ 100 °C; ±(0,05 % + 2) > 100 °C	
	K	-100,01372,0 °C	0,1 °C	±(0,05 % + 20) ≤ −100 °C; ±(0,05 % + 10) > −100 °C	
	E	-50,01000,0 °C	0,1 °C	±(0,05 % + 20) ≤ −100 °C; ±(0,05 % + 10) > −100 °C	
	J	-60,01200,0 °C	0,1 °C	±(0,05 % + 20) ≤ −100 °C; ±(0,05 % + 10) > −100 °C	
	Т	-100,0400,0 °C	0,1 °C	±(0,05 % + 20) ≤ −100 °C; ±(0,05 % + 10) > −100 °C	

Bemerkungen

- Temperaturskala ITS-90.
- Die Genauigkeit schließt nicht ein: Fehler der Kaltstellenkompensation, Sensorungenauigkeit, Einflüsse von thermoelektrischen Potentialen.
- Werkstoffe der Thermoelemente:

R: Platin-Rhodium 13 % / Platin · S: Platin-Rhodium 10 % / Platin · K: Nickel-Chrom / Nickel-Silizium · E: Nickel-Chrom / Kupfer-Nickel · J: Eisen / Kupfer-Nickel · T: Kupfer / Kupfer-Nickel.

Thermoelement (TC) – Fortsetzung & RTD

Messfunktion	Тур	Messbereich	Auflösung	Genauigkeit	Hinweise
Thermoelement	N	-200,01300,0 °C	-	-	Werkstoffe: Nickel-Chrom-Silizium / Nickel-Silizium
	В	600 °C1820 °C	1 °C	-	Werkstoffe: Platin-Rhodium 30 / Platin
	Α	0 °C2500 °C	1 °C	±(0,05 % + 3)	Werkstoffe: Wolfram-Rhenium 5 / Wolfram-Rhenium 20
	С	0 °C2310 °C	1 °C	±(0,05 % + 3)	Werkstoffe: Wolfram-Rhenium 5 / Wolfram-Rhenium 26
	D	0 °C2310 °C	1 °C	±(0,05 % + 3)	Werkstoffe: Wolfram-Rhenium 3 / Wolfram-Rhenium 25
Widerstandsthermometer (RTD)	Pt100 (385)	−200,0800,0 °C	0,1 °C	±(0,05 % + 0,6 °C)	Temperaturskala: Pt (385)

Thermoelement/RTD - Fortsetzung

Messfunktion	Тур	Messbereich	Auflösung	Genauigkeit	Hinweise
Widerstandsthermometer (RTD, 3-Leiter)	Pt200 (385)	−200,0630,0 °C	-	-	
	Pt500 (385)	-200,0630,0 °C	-	-	
	Pt1000 (385)	-200,0630,0 °C	-	-	
	Cu50	−50,0150,0 °C	-	-	Temperaturskala Pt (385)
Durchgangsprüfung (Continuity)	-	≤ 50 Ω: akustisches Signal	0,01 Ω	-	Erregerstrom ca. 1 mA

Allgemeine Hinweise (aus Tabelle):

2W/3W/4W-Messung möglich \cdot 500 Ω : Erregerstrom ca. 1 mA \cdot 5 k Ω : Erregerstrom ca. 0,1 mA \cdot Leerlaufspannung ca. 2,5 V \cdot Genauigkeit **ohne** Leitungswiderstandsfehler (v. a. 2W/3W), **ohne** Sensorungenauigkeit und **ohne** thermoelektrische Einflüsse.

Weitere Eigenschaften:

- Die Messunsicherheit umfasst Standardunsicherheit, Hysterese, Nichtlinearität, Wiederholbarkeit sowie die typische Langzeitstabilität über den genannten Zeitraum (K = 2).
- Display-Aktualisierungsrate: 2–3 Mal pro Sekunde.
- Maximal zulässige Eingangsspannung an der Buchse: 60 V Spitze (Vpk).
- Gleichtaktunterdrückung am Eingang: 50/60 Hz > 80 dB; Serien-/Normalmodus-Unterdrückung: 50/60 Hz > 40 dB.
- Temperaturkoeffizient: 0,1 × Grundgenauigkeit pro °C (für Umgebungstemperaturen < 18 °C oder > 28 °C).

Analoge Ausgangsfunktion (Verwendung innerhalb eines Jahres nach Kalibrierung, 23 °C \pm 5 °C, 20–70 % r. F.; Genauigkeit = \pm (% Sollwert + Ablesung))

Ausgangsfunktion	Bereich	Ausgangsbereich	Auflösung	Genauigkeit	Hinweise
Gleichspannung (DCV)	100 mV	-10,000 mV +110,00 mV	0,01 mV	± 0,05 % + 0,03 mV	Max. Ausgangsstrom: 0,5 mA
	1 V	-0,1000 V +1,1000 V	0,0001 V	± 0,05 % + 0,3 mV	Max. Ausgangsstrom: 2 mA
Ohm (Ω)	400 Ω	0 400,0 Ω	0,1 Ω	± 0.05 % + 0.2 Ω	Erregerstrom: $\pm 0,1\dots \pm 5$ mA: max. Ausgangsspannung 2 V. Bei Erregerstrom $\pm 0,1\dots 0,5$ mA zusätzl. Fehler $0,3$ Ω . Genauigkeit ohne Leitungswiderstand.
	4 kΩ	0 4,000 kΩ	1 Ω	± 0,05 % + 2 Ω	(gleiche Hinweise wie oben)
Thermoelement (TC)	Тур R	0 °C 1767 °C	1 ℃	≤ 100 °C: ± (0,05 % + 3) · > 100 °C: ± (0,05 % + 2)	Temperaturskala ITS-90. Genauigkeit ohne Fehler der Kaltstellenkompensation.

Thermoelement (TC) – Analoge Ausgangsfunktion (Fortsetzung)

Ausgangsfunktion	Тур	Ausgangsbereich	Auflösung	Genauigkeit
Thermoelement	S	01767 °C	1 °C	≤ 100 °C: ±(0,05 % + 3) · > 100 °C: ±(0,05 % + 2)
	К	−200,01372,0 °C	0,1 °C	≤ -100 °C; ±(0,05 % + 20) · > -100 °C; ±(0,05 % + 10)
	E	-200,01000,0 °C	0,1 °C	≤ -100 °C: ±(0,05 % + 20) · > -100 °C: ±(0,05 % + 10)
	J	-200,01200,0 °C	0,1 °C	≤ -100 °C: ±(0,05 % + 20) · > -100 °C: ±(0,05 % + 10)
	Т	-250,0400,0 °C	0,1 °C	≤ -100 °C: ±(0,05 % + 20) · > -100 °C: ±(0,05 % + 10)
	N	-200,01300,0 °C	0,1 °C	≤ -100 °C: ±(0,05 % + 20) · > -100 °C: ±(0,05 % + 10)

Hinweise:

- Temperaturskala ITS-90.
- Die Genauigkeit schließt nicht ein: Sensorungenauigkeit und Einflüsse des thermoelektrischen Potentials.
- Werkstoffe der Thermoelemente: R: Platin-Rhodium 13 %/Platin · S: Platin-Rhodium 10 %/Platin · K:
 Nickel-Chrom/Nickel-Silizium · E: Nickel-Chrom/Kupfer-Nickel (Konstantan) · J: Eisen/Kupfer-Nickel
 (Konstantan) · T: Kupfer/Kupfer-Nickel (Konstantan) · N: Nickel-Chrom-Silizium/Nickel-Silizium.

Thermoelement (TC) - Analoger Ausgang (Fortsetzung) & RTD-Ausgang

(Verwendung innerhalb eines Jahres nach Kalibrierung, 23 °C \pm 5 °C, 20–70 % r. F.; Genauigkeit = \pm (% Sollwert + Ablesung))

Ausgangsfunktion	Тур	Ausgangsbereich	Auflösung	Genauigkeit	Hinweise
Thermoelement	В	6001820 °C	1 °C	±(0,05 % + 3)	Werkstoffe: Pt-Rh 30 / Pt
	Α	02500 °C	1 °C	±(0,05 % + 3)	Werkstoffe: W-Re 5 / W-Re 20
	С	02310 °C	1 °C	±(0,05 % + 3)	Werkstoffe: W-Re 5 / W-Re 26
	D	02310 °C	1 °C	±(0,05 % + 3)	Werkstoffe: W-Re 3 / W-Re 25

Ausgangsfunktion	Тур	Ausgangsbereich	Auflösung	Genauigkeit	Hinweise
RTD (Widerstandsthermomete r)	Pt100 (385)	-200,0800,0 °C	0,1 °C	±(0,05 % + 0,6 °C)	Pt(385)-Skala; Erregerstrom $\pm 0,1\pm 5$ mA; U_max 2 V; bei $\pm 0,10,5$ mA zusätzl. Fehler $0,1~\Omega$
	Pt200 (385)	-200,0630,0 °C	0,1 °C	±(0,05 % + 0,6 °C)	wie oben
	Pt500 (385)	-200,0630,0 °C	0,1 °C	±(0,05 % + 0,6 °C)	wie oben

Hinweis: Die Thermoelement-Genauigkeiten schließen weder Sensorungenauigkeit noch Einflüsse thermoelektrischer Potentiale ein.

RTD-Ausgang - Ergänzung

Ausgangsfunktion	Тур	Ausgangsbereich	Auflösung	Genauigkeit	Hinweise
RTD	Pt1000 (385)	−200,0630,0 °C	0,1 °C	±(0,05 % + 0,6 °C)	Genauigkeit ohne Leitungswiderstand; Einflüsse thermoelektrischer Potentiale nicht berücksichtigt.
	Cu50	−50,0150,0 °C	0,1 °C	±(0,05 % + 0,6 °C)	wie oben

Weitere Eigenschaften (Analogausgang)

- Die Messunsicherheit umfasst Standardunsicherheit, Hysterese, Nichtlinearität, Wiederholbarkeit sowie die typische Langzeitstabilität über den angegebenen Zeitraum (k = 2).
- Maximal zulässige Spannung an der Ausgangsbuchse: ca. 30 V Spitze (Vpk); maximal zulässiger Ausgangsstrom: ca. 25 mA.
- Temperaturkoeffizient: 0,1 × Grundgenauigkeit pro °C (für Umgebungstemperaturen < 18 °C bzw. > 28 °C).

13 Hinweise zur Verwendung des Handbuchs

- Dieses Handbuch kann ohne vorherige Ankündigung geändert werden.
- Die Inhalte dieses Handbuchs gelten als korrekt. Sollten Sie Fehler, Auslassungen o. Ä. feststellen, wenden Sie sich bitte an den Hersteller.
- Das Unternehmen übernimmt keine Verantwortung für Unfälle oder Gefährdungen, die durch Fehlbedienung des Benutzers verursacht werden.
- Die in diesem Handbuch beschriebenen Funktionen berechtigen nicht zur Verwendung des Produkts für Spezial- bzw. besondere Zwecke.